Accepted Manuscript

Title: Development of an indirect ELISA method based on the VP3 protein of duck hepatitis A virus type 1 (DHAV-1) for dual detection of DHAV-1 and DHAV-3 antibodies

Author: Youlin Shen Anchun Cheng Mingshu Wang Shun Chen Renyong Jia Dekang Zhu Mafeng Liu Kunfeng Sun Qiao Yang Xiaoyue Chen

PII:	S0166-0934(15)00296-7
DOI:	http://dx.doi.org/doi:10.1016/j.jviromet.2015.08.016
Reference:	VIRMET 12870
To appear in:	Journal of Virological Methods
Received date:	15-4-2015
Revised date:	19-8-2015
Accepted date:	25-8-2015

Please cite this article as: Shen, Y., Cheng, A., Wang, M., Chen, S., Jia, R., Zhu, D., Liu, M., Sun, K., Yang, Q., Chen, X.,Development of an indirect ELISA method based on the VP3 protein of duck hepatitis A virus type 1 (DHAV-1) for dual detection of DHAV-1 and DHAV-3 antibodies, *Journal of Virological Methods* (2015), http://dx.doi.org/10.1016/j.jviromet.2015.08.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Development of an indirect ELISA method based on the VP3 protein of duck
2	hepatitis A virus type 1 (DHAV-1) for dual detection of DHAV-1 and DHAV-3
3	antibodies
4	
5	Youlin Shen ^{a,b,c} , Anchun Cheng ^{a,b,c,*} , Mingshu Wang ^{a,b,c,*} , Shun Chen ^{a,b,c} , Renyong
6	Jia ^{a,b,c} , Dekang Zhu ^{b,c} , Mafeng Liu ^{a,b,c} , Kunfeng Sun ^{a,b,c} , Qiao Yang ^{a,b,c} , Xiaoyue
7	Chen ^{b,c}
8	
9	^a Avian Diseases Research Center, College of Veterinary Medicine, Sichuan
10	Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
11	^b Key Laboratory of Animal Diseases and Human Health of Sichuan Province,
12	Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
13	^c Institute of Preventive Veterinary Medicine, Sichuan Agricultural University,
14	Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
15	*Corresponding author at: Key Laboratory of Animal Disease and Human Health of
16	Sichuan Province & Avian Disease Research Center, College of Veterinary
17	Medicine of Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan,
18	611130, P.R. China
19	Tel.: +86 835 2885774; fax: +86 835 2885774
20	E-mail address: <u>chenganchun@vip.163.com</u> (A. Cheng); <u>mshwang@163.com</u> (M.
21	Wang).
22	
23	

24

25 Summary

26	An indirect enzyme-linked immunosorbent assay (I-ELISA) based on the
27	recombinant VP3 protein of duck hepatitis A virus type 1 (DHAV-1) was developed
28	and evaluated in this study. The optimal antigen, serum and enzyme-labeled antibody
29	dilutions were 1:160 (0.94 μ g), 1:160 and 1:2000, respectively. The optimal blocking
30	buffer was 1% gelatin. The cutoff value was determined to be 0.332, and the
31	analytical sensitivity was 1:1280 (OD ₄₅₀₋₆₃₀ = 0.37). The results of the specificity
32	evaluation showed that no cross-reactivity existed between DHAV-1 antiserum and
33	other common duck-sensitive pathogens, except for duck hepatitis A virus type 3
34	(DHAV-3), suggesting that this could be a common approach for the simultaneous
35	detection of DHAV-1 and DHAV-3 antibodies. The coefficients of variation (CVs) for
36	all of the tested samples were lower than 10%. The concordance between the I-ELISA
37	based on the VP3 subunit of DHAV-1 and that based on the whole DHAV-1 virus
38	particle was 96%. These results indicate that the VP3-based I-ELISA method has high
39	sensitivity, specificity, and repeatability and is as effective as the DHAV-1-based
40	I-ELISA method for sero-surveillance. Thus, it may be a convenient and novel
41	method for DHAV antibody detection and epidemiological surveillance of
42	DHAV prevalence.
43	
44	Keywords

45 Duck hepatitis A virus type 1 (DHAV-1); VP3 protein; Indirect ELISA (I-ELISA);
46 Antibody detection.

1'	7

48 Highlights:

49	1.	This is the first report of development of a VP3 based I-ELISA for detecting
50		antibodies against DHAV-1.
51		
52	2.	The I-ELISA method are capable of dectecting DHAV-1 and DHAV-3 antibodies
53		simultaneously.
54		
55	3.	The I-ELISA method had a coincidence rate of 96% with the I-ELISA method
56		based on DHAV-1 whole viruses.
57		
58		
59	1.	Introduction
60		Duck viral hapatitic (DVH) is a highly fatal and rapidly approaching contacious
00		Duck vital hepatitis (DVH) is a highly fatal and rapidly spreading contagious
61	dis	sease of ducklings that is mainly caused by duck hepatitis A virus (DHAV). It
62	be	longs to the genus Avihepatovirus of the family Picornaviridae (Knowles et al.,
63	20	12). It is an OIE notifiable disease infecting almost all ducklings less than 4 weeks
64	of	age, with a mortality rate as high as 50%-95% (Woolcock and Tsai, 2013). Thus,
65	the	e timely and accurate detection of infection is vital for disease control. The
66	ne	utralization test is the most classical method among the currently approved methods
67	(H	wang, 1969; Kim et al., 2006), but it is laborious and skill dependent. Other assays,
68	su	ch as immunofluorescence technology and the immune colloidal gold technique,
69	ha	ve much higher sensitivity and specificity but are costly. With increasing
70	kn	owledge of molecular biology and following publication of the whole DHAV
71	ge	nome (Tseng et al., 2007), techniques based on PCR, such as RT-PCR and real-time

72	TaqMan RT-PCR, have become available (Cheng et al., 2009; Yang et al., 2008).
73	Although they are efficient, accurate and rapid, they rely on equipment that is not
74	available in all settings, and they are far less convenient than detecting a virus-specific
75	antibody in the serum (Liu et al., 2010). The indirect enzyme-linked immunosorbent
76	assay (I-ELISA) is a good alternative to these techniques, and utilizing recombinant
77	protein produced by molecular biological assays to establish an ELISA method is
78	becoming a new trend for the efficient diagnosis and epidemiological surveillance of
79	DHAV.
80	DHAV has three genotypes: DHAV-1, DHAV-2 and DHAV-3. Only DHAV-1
81	and DHAV-3 are prevalent in mainland China, and DHAV-1 is the most prevalent
82	genotype worldwide (Soliman et al., 2015; Erfan et al., 2015). The DHAV genome
83	consists of only one single open reading frame (ORF) flanked by 5' and 3'
84	untranslated regions (UTRs), and it is translated into three mature structural proteins,
85	VP0, VP3 and VP1 (Kim et al., 2007; Kim et al., 2006; Tseng et al., 2007). Among
86	them, VP1 is the most external and important immunogenic protein and is thus the
87	most widely studied. However, VP3 is also a main capsid protein with numerous
88	antigenic sites that can potentially trigger host immune responses. Moreover, VP3 has
89	a more conserved genome sequence than VP1 (Kim et al., 2006; Tseng et al., 2007;
90	Tseng and Tsai, 2007), which may enable the development of novel diagnostic agents.
91	In this study, an I-ELISA method based on the recombinant VP3 protein of
92	DHAV-1 (VP3-DHAV I-ELISA) was established. The parameters were optimized, and
93	the sensitivity, specificity and repeatability were evaluated. Furthermore, I-ELISA

94	based on DHAV-1 whole virus particles (DHAV I-ELISA) was compared with the
95	novel VP3-DHAV I-ELISA method. The newly established method may be a
96	supplement to or even a substitution for the DHAV I-ELISA method for DHAV
97	antibody detection and the monitoring of DHAV prevalence.
98	2. Materials and methods
99	2.1. Viral strain and serum samples
100	DHAV-1 strain H was kept in our lab, and its complete genome is available in
101	GenBank (JQ301467.1). Positive serum samples were collected from ducks that were
102	artificially infected with DHAV-1, and the samples were stored at -80 $^\circ\!C$ until use.
103	Negative serum samples were collected from DHAV-free healthy ducks, and their
104	negative statuses were confirmed by RT-PCR. Confirmed antisera against several
105	common duck-sensitive antigens were stored in our lab. Serum samples were obtained
106	from naïve, DHAV-1-vaccinated and DHAV-1-infected ducks from different farms in
107	Sichuan province, China, and they were used to compare VP3-DHAV I-ELISA with
108	DHAV I-ELISA.
109	2.2. Antigen preparation
110	Recombinant VP3 protein of DHAV-1 was expressed using a pGEX-4T-1 vector

in a prokaryotic expression host, BL21 (DE3), and purified by SDS-PAGE gel

112 extraction by the author (results to be published). DHAV-1 particles were propagated

- in 11-day-old duck embryos (Liu et al., 2010) and purified by approaches described in
- 114 a previous paper published by our lab (Jiang et al., 1989). The concentrations of both
- antigens were analyzed with a spectrophotometer (SmartSpecTM 3000, Bio-Rad).

116 2.3. Establishment and optimization of VP3-DHAV I-ELISA

117	High-titer serum samples from artificially infected ducks and confirmed serum
118	samples from DHAV-free healthy ducks were used as positive and negative working
119	standards, respectively. The optimum dilutions of coating antigen and serum were
120	determined by checkerboard titration in a 96-well microplate, according to an
121	essentially classical indirect ELISA protocol (Crowther, 2009). The purified VP3
122	protein was serially diluted by two-fold (from 1:20 to 1:2560). The positive and
123	negative serum samples were diluted from 1:40 to 1:1280 in the same manner in a
124	separate plate. An HRP-labeled rabbit anti-duck IgG conjugate (1:5000 to 1:10000
125	recommended, Beijing Kangbiquan BioScience) was optimized by preparing two-fold
126	serial dilutions (from 1:500 to 1:4000). The optimal blocking buffer (dissolved in PBS
127	containing 0.05% Tween-20) was chosen from 1% BSA, 5% BSA, 1% gelatin, 5%
128	gelatin and 5% skim milk. All of the samples were tested in triplicate and measured
129	with a microplate spectrophotometer (Model680, Bio-Rad) at two wavelengths (OD_{450}
130	and OD_{630}). A reaction with a corresponding positive value (P) of approximately 1.0, a
131	negative value (N) of below 0.4, and the highest P/N value that was no less than 2.1,
132	was considered optimal.
133	2.4. Validation of the method parameters

The cutoff value for the VP3-DHAV I-ELISA was determined using a panel of 40 negative serum samples under optimal conditions. The result was described as the mean of the total negative serum OD values plus three standard deviations (SDs) (Jia et al., 2009; Upadhyay et al., 2009). An OD value of above the cutoff value was

138 considered positive for the serum sample.

139	A positive serum sample was used to evaluate the lower detection limit by
140	performing end-point titration from 1:80 to 1:10240 (Mahajan et al., 2015). Each
141	dilution was tested three times. Positive and negative serum samples for DHAV-1
142	served as controls. The maximum dilution with the mean OD value that was above the
143	cutoff value was considered to indicate the analytical sensitivity of the method. The
144	analytical sensitivity of DHAV I-ELISA (mentioned below in section 2.5) was
145	evaluated in the same manner.
146	The specificity of VP3-DHAV I-ELISA was evaluated by an antigenic
147	cross-reactivity test (Liu et al., 2014) and blocking test. Confirmed antisera to
148	DHAV-1, DHAV-3, duck plague virus (DPV), avian influenza virus (AIV), duck
149	swollen head septicemia virus (DSHSV), Riemerella anatipestifer (R.A), Salmonella
150	enterica (S.E) and Escherichia coli (E. coli) were used to evaluate antigenic
151	cross-reactivity. Each antiserum was tested three times, and DHAV-1-negative serum
152	served as a control. A blocking test was conducted to further evaluate the specificity.
153	Briefly, antiserum to DHAV-1 was mixed with DPV and DHAV-1 antigen separately
154	at 10:1 (V/V), neutralized at 37°C for 1 hr, and then diluted to the optimal
155	concentration and incubated as a primary antibody. Each serum sample was tested
156	three times, and DHAV-1-positive serum that was not mixed with antigen served as a
157	control. DHAV-3 antiserum was mixed with DHAV-1 antigen and neutralized in the
158	same manner. The blocking rate was calculated as the evaluation index.
159	The repeatability evaluation was conducted as follows. Antigens from

160	the same and different batches were used to test the same panel of positive $(n = 3)$ and
161	negative $(n = 3)$ serum samples for DHAV-1. The intra-assay and inter-assay
162	coefficients of variation (CVs) were calculated. Each serum sample was tested four
163	times.
164	2.5. Comparison of VP3-DHAV I-ELISA and DHAV I-ELISA for antibody detection of
165	DHAV-1 in clinical specimens
166	DHAV I-ELISA was conducted as previously described (Zhao et al., 1991) with
167	some modifications. First, we prepared antigens as described in section 2.2. Second,
168	we blocked an ELISA plate with 5% skim milk (dissolved in PBS containing 0.05%
169	Tween-20) for 1.5 hr at 37°C before adding diluted serum. Next, we adjusted the
170	incubation time of the serum with an HRP-labeled rabbit anti-duck IgG conjugate to
171	45 min at 37°C. Finally, we used a commercial TMB substrate and performed
172	measurements at two wavelengths (OD_{450} and OD_{630}).
173	Serum samples from different sources were tested by VP3-DHAV I-ELISA and
174	DHAV I-ELISA separately to evaluate the similarities between the two assays to gain
175	insights into the clinical applicability of the established VP3-DHAV I-ELISA. The
176	sensitivity and specificity of the new method were determined. The similarity rate was
177	calculated as follows: the sum of the true positive and true negative serum samples
178	divided by the total number of samples.
179	3. Results
180	3.1. Standardization of the VP3-DHAV I-ELISA procedure

181 Purified recombinant VP3 protein was prepared and identified to satisfy the

182	experimental	requirements	(data not shown). The optima	l concentrations	of VP3
-----	--------------	--------------	-----------------	---------------	------------------	--------

- protein, serum and rabbit anti-duck IgG conjugate were 1:160 (0.94 µg), 1:160 (Table
- 184 1) and 1:2000 (Table 2), respectively. The optimal blocking buffer was 1% gelatin
- 185 (data not shown). Low background, as well as significant differences, were found to
- 186 exist between the positive and negative serum samples.
- 187 *3.2. Validation of the method parameters*
- 188 A panel of DHAV-1 antibody-negative serum samples was tested under the
- determined optimal conditions. The OD values ranged from 0.035 to 0.267, with a
- 190 mean OD value of 0.122 and an SD of 0.070. The cutoff value was calculated using
- 191 the following formula: $0.122 + 3 \times 0.07 = 0.332$.
- 192 The lower detection limit, also called the analytical sensitivity of the method,
- 193 was evaluated by end-point titration and was determined to be $1:1280 (OD_{450-630} =$
- 194 0.37) (Fig. 1). The analytical sensitivity was 1:2560 ($OD_{450-630} = 0.42$) for the DHAV
- 195 I-ELISA (data not shown).
- 196 The results for the specificity evaluation showed that all of the serum samples,
- 197 except for the DHAV-1- and DHAV-3-positive samples, were below the cutoff value
- (Fig. 2). The OD value of the DHAV-1-negative samples was 0.258 ± 0.010 . The
- 199 DPV- positive serum samples had the highest OD value (0.246 ± 0.023) among the
- 200 tested samples, except for the DHAV-1- and DHAV-3-positive serum samples. A
- 201 significant difference in OD values was detected between the seronegative and
- seropositive samples. For the blocking tests (data not shown), the OD values of the
- sera mixed with DHAV-1 and DPV particles were 0.230 ± 0.003 and 1.210 ± 0.003 ,

204	respectively, while that of the control was 1.246 ± 0.038 . The calculated blocking rate
205	for DHAV-1 antiserum was 82%, indicating that the DHAV-1-positive serum reacted
206	specifically with DHAV-1 rather than with DPV. The blocking rate for DHAV-3
207	antiserum was 56%, indicating that it cross-reacted with DHAV-1.
208	The repeatability of the assay was evaluated by determining the average
209	intra-assay and inter-assay CVs. Serum samples with different OD values were tested
210	(Fig. 3). The intra-assay CV ranged from 0.73% to 8.64%, with a mean of 5.36%,
211	while the inter-assay CV ranged from 3.35% to 7.68%, with a mean of 5.53%. None
212	of the tested serum samples had a CV of over 10%, indicating the stability and
213	repeatability of the method.
214	3.3. Comparison of efficacies of VP3-DHAV I-ELISA and DHAV I-ELISA for detecting
215	DHAV-1 antibody
216	Serum samples of different origins were tested simultaneously using the
217	VP3-DHAV and DHAV-based I-ELISA for comparison. The cutoff value of the
218	DHAV I-ELISA determined in this study was 0.313 (data not shown). The results
219	(data not shown) showed that the positive rates for the VP3-DHAV and DHAV-based
220	I-ELISAs were 50% (50/100) and 52% (52/100), respectively. However, one sample
221	that tested negative using DHAV I-ELISA was found to be positive by VP3-DHAV
222	I-ELISA. In contrast, 3 samples that tested negative by VP3-DHAV I-ELISA were
223	found to be positive by DHAV I-ELISA. The diagnostic sensitivity and specificity of
224	the new method were 94.2% (49/52) and 97.9% (47/48), respectively. The
225	concordance between the two methods was 96% [(49+47)/100], indicating that the

226	efficacy of VP3-DHAV I-ELISA for antibody detection was almost equal to that of
227	DHAV I-ELISA.
228	4. Discussion
229	The pathogenic characteristics of DVH make it an intractable disease that must
230	be identified and prevented during the early stages. I-ELISA can be performed to test
231	sera from duck flocks with suspected DHAV infections to efficiently monitor the
232	antibody levels in ducks, and it can provide a guide for preventive measures for timely
233	control of the disease. ELISA is commonly used for the detection of numerous
234	picornaviruses (Liu et al., 2010; Ma et al., 2008; Mahajan et al., 2013; Mahajan et al.,
235	2015; Mohapatra et al., 2014; Yu et al., 2012) and not merely for identification of
236	DHAV.
237	In theory, using a whole virus as a coating antigen in indirect ELISA is more
238	advantageous than using its subunits because whole viruses have more comprehensive
239	antigenicity. This advantage may account for the higher detection limit (1:2560) of
240	DHAV I-ELISA than that of VP3-DHAV I-ELISA (1:1280). Nevertheless, purification
241	of DHAV particles is costly and difficult (Liu et al., 2010); thus, it is urgent to identify
242	a substitution for this antigen. Recombinant protein is a reasonable choice because it
243	is readily available, easy to purify to any required concentration, and capable of
244	immunoreactivity. Moreover, ELISAs based on recombinant proteins have been
245	widely used (Ma et al., 2008; Zhang et al., 2015). To our knowledge, however, no
246	VP3-DHAV I-ELISA method for DHAV detection has been reported.
247	In this study, an indirect ELISA method based on the recombinant VP3 protein

248	was developed. A panel of DHAV-negative serum samples collected from healthy
249	ducklings was confirmed by RT-PCR (Cheng et al., 2009). Although the samples had
250	been filtered, the OD values varied greatly among them, possibly due to hemolysis or
251	complex components present in the serum. The analytical sensitivity of the method
252	was 1:1280 (OD ₄₅₀₋₆₃₀ = 0.37). The results of antigenic cross-reactivity testing
253	indicated that the VP3-DHAV I-ELISA method failed to detect antisera to other
254	duck-sensitive antigens but was capable of detecting antisera to both DHAV-1 and
255	DHAV-3. This finding may be used to aid in the monitoring of DHAV antibodies, but
256	it fails to differentiate whether DHAV-1 or DHAV-3 is the pathogen, and it also
257	indicates the existence of cross-reactivity between the two genotypes. VP3 is
258	relatively conserved, and sequence BLAST analysis showed that the VP3 proteins of
259	DHAV-1 and DHAV-3 share 79%-80% identity, which is higher than that of the VP1
260	proteins (70.51%-72.81%). However, a published VP1-based I-ELISA method has
261	been demonstrated to be able to detect antisera to DHAV-1 and DHAV-3
262	simultaneously (Yang et al., 2014). The repeatability of the method was proven to be
263	good because both the intra-assay and inter-assay CVs were lower than 10%. Taken
264	together, these results indicate that the VP3-DHAV I-ELISA method is sensitive,
265	specific and stable and that it can be used as a common approach to detect DHAV-1
266	and DHAV-3 antibodies.
267	To evaluate the efficacy of the novel I-ELISA method, it's critical and necessary
268	to compare it with the standard method (Liu et al., 2014; Yang et al., 2014; Zhang et
269	al., 2015). The neutralization test is not suitable for massive serological detection of

270	the virus strain used in this study, which has not adapted to cell culture to date;
271	moreover, no approved commercial ELISA kits for DHAV are available for clinical
272	use. Even so, DHAV whole particle-based I-ELISA has been demonstrated to have
273	good consistency according to the neutralization test (Zhao et al., 1991; Sun et al.,
274	1997); therefore, a published DHAV I-ELISA method was modified and improved for
275	use as a standard to evaluate the newly established VP3-DHAV I-ELISA method. To
276	imitate field conditions, serum samples were collected from ducks naturally infected
277	with DHAV, and they were also obtained from vaccinated and naïve ducks were at the
278	clinic. The results revealed strong similarities between the efficacies of the two assays
279	(96%), suggesting that the immunoreactivity of the VP3 subunit is comparable to that
280	of the whole DHAV-1 virus particle. It demonstrates that the VP3 subunit, in addition
281	to VP1 (Oberste et al., 1999; Zhang et al., 2014), can also act as an indicator of
282	DHAV-1 infection. Compared with the published VP1-based ELISA method
283	developed by Liu et al. (2010), this new assay has lower sensitivity but higher
284	specificity. This difference may be related to the increased sequence conservation of
285	VP3 compared with VP1. It is difficult to accurately compare our results with those of
286	Liu et al. because their diagnostic specificity and sensitivity were based on the
287	neutralization test, while ours were based on the DHAV whole particle I-ELISA.
288	Taken together, these results demonstrate that the VP3-DHAV I-ELISA is capable of
289	serological detection.
290	This study is far from perfect, and we still need to evaluate a larger number of

samples and to quantify antibodies. Even so, this method shows potential for the

13

292 serological detection of DHAV antibodies.

In conclusion, we have developed a novel indirect ELISA method for detect DHAV-1 and DHAV-3 antibodies cheaply, rapidly and accurately. The VP3-DHA I-ELISA method has been demonstrated to be highly sensitive, specific, and equa capable of sero-surveillance compared with the DHAV I-ELISA method. It is a u supplement for the monitoring of both vaccinated and non-vaccinated infected ff Acknowledgements This research was supported by the China Agricultural Research Sy (CARS-43–8), the National Science and Technology Support Program for Agricu (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015).	
 DHAV-1 and DHAV-3 antibodies cheaply, rapidly and accurately. The VP3-DHA I-ELISA method has been demonstrated to be highly sensitive, specific, and equa capable of sero-surveillance compared with the DHAV I-ELISA method. It is a u supplement for the monitoring of both vaccinated and non-vaccinated infected fl Acknowledgements This research was supported by the China Agricultural Research Sy (CARS-43-8), the National Science and Technology Support Program for Agricu (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015). 	cting
 I-ELISA method has been demonstrated to be highly sensitive, specific, and equa capable of sero-surveillance compared with the DHAV I-ELISA method. It is a u supplement for the monitoring of both vaccinated and non-vaccinated infected fle Acknowledgements This research was supported by the China Agricultural Research Sy (CARS-43–8), the National Science and Technology Support Program for Agricultural 2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015). 	AV
 capable of sero-surveillance compared with the DHAV I-ELISA method. It is a u supplement for the monitoring of both vaccinated and non-vaccinated infected fl Acknowledgements This research was supported by the China Agricultural Research Sy (CARS-43–8), the National Science and Technology Support Program for Agricul (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015). 	ually
 supplement for the monitoring of both vaccinated and non-vaccinated infected fl Acknowledgements This research was supported by the China Agricultural Research Sy (CARS-43–8), the National Science and Technology Support Program for Agricu (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015). 	useful
Acknowledgements Acknowledgements This research was supported by the China Agricultural Research Sy (CARS-43–8), the National Science and Technology Support Program for Agricu (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015). He Education Department of Sichuan Province (12TD005/2013TD0015).	flocks.
Acknowledgements This research was supported by the China Agricultural Research Sy (CARS-43–8), the National Science and Technology Support Program for Agricu (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015).	
This research was supported by the China Agricultural Research Sy (CARS-43–8), the National Science and Technology Support Program for Agricul (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015).	
 (CARS-43-8), the National Science and Technology Support Program for Agricu (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progra the Education Department of Sichuan Province (12TD005/2013TD0015). 	System
 (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progratic the Education Department of Sichuan Province (12TD005/2013TD0015). (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progratic the Education Department of Sichuan Province (12TD005/2013TD0015). (2015BAD12B05/2011BAD34B03) and the Innovative Research Team Progratic the Education Department of Sichuan Province (12TD005/2013TD0015). (2015BAD12B05/2013TD0015). 	culture
 the Education Department of Sichuan Province (12TD005/2013TD0015). 	ram of
304 305 306 307 308 309 310	
305 306 307 308 309 310	
306 307 308 309 310	
307 308 309 310	
308 309 310	
309 310	
310	

- 311
- 312
- 313

314	
315	
316	
317	
318	
319	
320	
321	
322	
323	References
324	Cheng, A., Wang, M., Xin, H., Zhu, D., Li, X., Chen, H., Jia, R., Yang, M., 2009.
325	Development and application of a reverse transcriptase polymerase chain
326	reaction to detect Chinese isolates of duck hepatitis virus type 1. J. Microbiol.
327	Methods 77, 332-336.
328	Crowther, J. R., 2009. The ELISA guidebook, 2nd ed. Humana Press, New York.
329	Erfan, A.M., Selim, A.A., Moursi, M.K., Nasef, S.A., Abdelwhab, E.M., 2015.
330	Epidemiology and molecular characterisation of duck hepatitis A virus from
331	different duck breeds in Egypt. Vet. Microbiol. 177, 347-352.
332	Hwang, J., 1969. Duck hepatitis virus-neutralization test in chicken embryos. Am. J.
333	Vet. Res. 30, 861-864.
334	Jia, R., Cheng, A., Wang, M., Qi, X., Zhu, D., Ge, H., Luo, Q., Liu, F., Guo, Y., Chen,
335	X., 2009. Development and evaluation of an antigen-capture ELISA for detection

336	of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody
337	against the UL24 expression protein. J. Virol. Methods 161, 38-43.
338	Jiang, W., Liao, D., Xie, J., 1989. Purification and electron microscope observation of
339	duck hepatitis virus. Animal Husbandry & Veterinary Medicine (In Chinese) 21,
340	45-50.
341	Kim, M.C., Kwon, Y.K., Joh, S.J., Kim, S.J., Tolf, C., Kim, J.H., Sung, H.W.,
342	Lindberg, A.M., Kwon, J.H., 2007. Recent Korean isolates of duck hepatitis
343	virus reveal the presence of a new geno- and serotype when compared to duck
344	hepatitis virus type 1 type strains. Arch. Virol. 152, 2059-2072.
345	Kim, M.C., Kwon, Y.K., Joh, S.J., Lindberg, A.M., Kwon, J.H., Kim, J.H., Kim, S.J.,
346	2006. Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage
347	close to the genus Parechovirus in the family Picornaviridae. J. Gen. Virol. 87,
348	3307-3316.
349	Knowles, N., Hovi, T., Hyypiä, T., King, A., Lindberg, A., Pallansch, M., Palmenberg,
350	A., Simmonds, P., Skern, T., Stanway, G., Yamashita, T., Zell, R., 2012. Virus
351	taxonomy: classification and nomenclature of viruses. In: Picornaviridae, Ninth
352	Report of the International Committee on T axonomy of Viruses. Elsevier, San
353	Diego, pp. 855-880.
354	Liu, M., Zhang, T., Zhang, Y., Meng, F., Li, X., Hou, Z., Feng, X., Kong, X., 2010.
355	Development and evaluation of a VP1-ELISA for detection of antibodies to duck
356	hepatitis type 1 virus. J. Virol. Methods 169, 66-69.

Liu, Q., Jia, R., Wang, M., Huang, J., Zhu, D., Chen, S., Yin, Z., Wang, Y., Chen, X.,

358	Cheng, A., 2014. Cloning, expression and purification of duck hepatitis B virus
359	(DHBV) core protein and its use in the development of an indirect ELISA for
360	serologic detection of DHBV infection. Arch. Virol. 159, 897-904.
361	Ma, X., Song, M., Yu, K., Liao, M., Xin, C., 2008. [Expression of VP1 gene and
362	ELISA detection of antibodies against duck hepatitis virus]. Wei sheng wu xue
363	bao = Acta microbiologica Sinica 48, 1110-1114.
364	Mahajan, S., Mohapatra, J.K., Pandey, L.K., Sharma, G.K., Pattnaik, B., 2013.
365	Truncated recombinant non-structural protein 2C-based indirect ELISA for FMD
366	sero-surveillance. J. Virol. Methods 193, 405-414.
367	Mahajan, S., Mohapatra, J.K., Pandey, L.K., Sharma, G.K., Pattnaik, B., 2015.
368	Indirect ELISA using recombinant nonstructural protein 3D to detect foot and
369	mouth disease virus infection associated antibodies. Biologicals 43, 47-54.
370	Mohapatra, A.K., Mohapatra, J.K., Pandey, L.K., Sanyal, A., Pattnaik, B., 2014.
371	Diagnostic potential of recombinant nonstructural protein 3B to detect antibodies
372	induced by foot-and-mouth disease virus infection in bovines. Arch. Virol. 159,
373	2359-2369.
374	Oberste, M.S., Maher, K., Kilpatrick, D.R., Pallansch, M.A., 1999. Molecular
375	evolution of the human enteroviruses: correlation of serotype with VP1 sequence
376	and application to picornavirus classification. J. Virol. 73, 1941-1948.
377	Soliman, M., Alfajaro, M.M., Lee, M.H., Jeong, Y.J., Kim, D.S., Son, K.Y., Kwon, J.,
378	Choi, J.S., Lim, J.S., Choi, J.S., Lee, T.U., Cho, K.O., Kang, M.I., 2015. The

379	prevalence of duck hepatitis A virus types 1 and 3 on Korean duck farms. Arch.
380	Virol. 160, 493-498.
381	Sun, Q., Liu, H., Li, J., Cai, B., Tao, S., 1997. Study on the detection of antibodies
382	against duck hepatitis virus by an indirect enzyme-linked immunosorbent assay
383	(ELISA). Chinese Journal of Veterinary Scince (in Chinese) 17, 347-349.
384	Tseng, C.H., Knowles, N.J., Tsai, H.J., 2007. Molecular analysis of duck hepatitis
385	virus type 1 indicates that it should be assigned to a new genus. Virus Res. 123,
386	190-203.
387	Tseng, C.H., Tsai, H.J., 2007. Molecular characterization of a new serotype of duck
388	hepatitis virus. Virus Res. 126, 19-31.
389	Upadhyay, C., Ammayappan, A., Vakharia, V.N., 2009. Detection of NP, N3 and N7
390	antibodies to avian influenza virus by indirect ELISA using yeast-expressed
391	antigens. Virol J. 6, 158.
392	Woolcock, P.R., Tsai H.J., 2013. Duck hepatitis. In: Diseases of Poultry, 13th ed. John
393	Wiley & Sons, pp. 422-431.
394	Yang, F., Zhang, H., Cheng, F., Yue, H., Tang, C., 2014. Development of an indirect
395	ELISA for detecting antibodies against genotype A and C duck hepatitis A virus
396	based on recombinant VP1 protein. Acta Veterinaria et Zootechnica Sinica (In
397	Chinese) 45, 1148-1153.
398	Yang, M., Cheng, A., Wang, M., Xing, H., 2008. Development and application of a
399	one-step real-time Taqman RT-PCR assay for detection of Duck hepatitis virus
400	type1. J. Virol. Methods 153, 55-60.

Serum samples

Intra-assay repeatability

Mean OD values

Inter-assay repeatability